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Sturm—Liouville Problems with Two-Point (NBCs)

Aims and problems

In the case of the differential Sturm—Liouville Problem

—u"" = Xu, te(0,1),
u(0)=0, or #(0)=0
we investigate the following NBC:
u(1) = yu(§), u(1) = yu' (),
u' (1) = yu(§), u' (1) = v’ (€),
u(§) = yu(l =€),

where y e Rir¢ € [0, 1].

Main problems:
- find Constant Eigenvalues, which do not depend on parameter ~;
- find Zeroes, Poles and Critical Points of Characteristic Function;
- describe Spectrum Curves and investigate their properties;

- investigate the dependence of Spectrum Domain on parameter ¢ in
NBC, find bifurcation points and types.
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Sturm—Liouville Problems with Two-Point (NBCs)

Aims and problems

In the case of discrete Sturm—Liouville Problem we approximate differential
equation by the following Finite-Difference Scheme (FDS)
Up—1 = 2U; + Uppi
h2
and investigate the following NBC:
Unt1 = Un-t
T

At the left side of interval one of the conditions was selected:
Uy =0, U, = Up.

+AU; =0, j=Tn—1 ©)

U, = , Uy = vUp.

The discrete problem was obtained by approximating the differential problem
by a finite difference scheme.

Main problems:

- find Constant Eigenvalues, which do not depend on parameter ~;

- find Zeroes, Poles and Critical Points of Characteristic Function;

- determine the dependence of these points on the number of grid points;

- investigate the behavior of Spectral Curves in the neighborhood of
special special points;

- find the quantitative relationships between the numbers of points
mentioned.
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SLP with one classical BC and another two-point NBC

—u" =Xu, t€(0,1),

u(0) =0,

u(1) = yu'(€),
where parameters v € R and ¢ € [0, 1]. The eigenvalue A € C, := C and
eigenfunction u(r) can be complex function.

If v = 0, then we have the SLP with classical BCs. In this case eigenvalues
and eigenfunction are known:

CRGEC

M= (kn)?,  w(t) =sin(kni), k € N 7)

The case v = oo corresponds to (4) with clasical BCs u(0) = 0 and «'(§) = 0,
& € [0, 1], instead of condition (6) and eigenvalues and eigenfunction are:

o= ((k—=1/2)7/€)%,  w(r) = sin((k — 1/2)71/€), k € N. )

Kristina Bingelé, Agné Bankauskiené, Artiras Stikonas (2020);
“Investigation of spectrum curves for the Sturm—Liouville problem with two-point
nonlocal boundary condition”.
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Figure 1: Bijective mapping A = (7¢)? between Cy and C, [?].

Nontrivial solution of the problem (4)—(6) exists if g € C, is the root of a

equation

smﬁ;rq) =cos(§mq) Z(q) = vPe(q)- (9)

We will define a Constant Eigenvalue (CE) as the eigenvalue which does not
depend on the parameter ~. Then for any CE \ € C, there exists the
Constant Eigenvalue Point (CEP) ¢ € C,. CEP are roots of the system:

Z(q) =0,  Pe(q) =0, (10) 3|
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Eigenvalue A = 0 exists if and only if v = 1.

Lemma 1.6.

For SLP (4)—(6) Constant Eigenvalues exist only for rational parameter
E=m/ne (0,1),meN,, neN,, values and those eigenvalues are equal to
A = (mes)?, ¢ := (s —1/2)n, s € N.

A\

For SLP (4)—(6) we have meromorphic Complex Characteristic Functions
(Complex CF):

. e @ _ sin(mq)
(@) =e(q:6) = 5 @) " cos(eng)’
~-points of Complex CF define EPs (and Eigenvalues, too) which depend on
parameter . We call such EPs Nonconstant Eigenvalue’s Points (NEP) and
corresponding Eigenvalues as Nonconstant Eigenvalues.

z€C, (11)
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Remark 1.1.

If the parameter £ = 0, then from the formula (9) we obtain that P = 1. So,
Z¢ = @ and CEPs do not exist. If ¢ = 1 then there are no CEPs, because the
functions sin(mq) and cos(mg) have no common zeroes (we have the third
type BC).

Remark 1.2.

If the parameter§ ¢ Q, then CEPs do not exist, because the equation
El=k— 5 has not roots for /, k € N.

Remark 1.3.

If ¢ € Q, & =m/nandn € N, then the right hand side of equation nk — im = §
is integer number. If n € N, then this equation has no roots.

Remark 1.7.

In the case ¢ = 0 function P = 1 and PPs do not exist. If £ > 0 a set of poles
Pe = @ or countable. So, PPs exist if £ # 1/n.
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Figure 2: CCF, Spectrum Domain, Real CF for £ = 0, ¢ = 1. ® — Zero Point,
O — Pole Point, © — Ramification Point, © — Branch Eigenvalue Point, ® — Critical Point.




Real Characteristic Function (Real CF) describes only real Nonconstant
Eigenvalues and it is restriction of the Complex CF ~.(g) on the set R,. We
can use the argument x € R for Real CF:

. __ sinh(mx) .
W) =€) = ) ) T Tremtey £SO (12
1066 = Soery, x>0

This function is useful for investigation of real negative, zero and positive
eigenvalues
—(7x)?, x <05

(mx)?, x=0. (13)

A= M) = M(x€) = {

Remark 1.11.

Inthe case £ = ¢ = % the point ¢ = 0 is 3CP in the domain C,, but for A = 0

it is only 1CP, because ¢ = 0 is RP for map A = (¢)?. In the complex plane
C, the Taylor series CF ~(g) have a form

Y E) =14 (=g + 382+ (5 — %& — GG — 3NN +00).  (14)

If ¢ # &, then point ¢ = 0 and A = 0 are not CPs.




Zero Point of CF can not be CP.

Remark 1.13.

Pole Point of CF is not CP. Function v~" has CP at this point only if order of
the pole is greater than the first

Remark 1.14.

In the case £ = 1 and v # 0 we can consider boundary condition

W' (1) = Au(1), 7# € R, where 4 = v~'. Now CF is 4 = mg cos(mq)/ sin(mg) and
its zeroes are zx = px, k € N, poles are pr = z, k € N (for ¢ = 1 CEPs do not
exist, but in the general case ¢; = ¢ for all k). For parameter 4 € R all
Spectrum Curves will be regular.

Remark 1.9.

A point ¢ = oo ¢ C,. This point is singular (isolated essential point if P: = &,
otherwise we have cluster of poles) point.
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Figure 3: Spectrum Curves for various parameter ¢ values.
@® — Critical Point at Branch Eigenvalue Point.
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The second order CP bifurcation 5
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Figure 4: Spectrum Curves for various parameter ¢ values; bifurcations.
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The second order CP bifurcation 5,35
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Figure 5: Spectrum Curves for various parameter ¢ values; bifurcations.




Conclusions of this Chapter

@ ForsSLP (4)—(6) CEs do not exist for irrational parameter £ and exist
onlyforé =2 cQ,0<m<nméeN,, neN,.

@ SLP (4)—(6) has two types CPs: the first, the second order. We have
only one 3CP, by, = 0, £ = £&. = 1/+/3. But this point is 1CP in the
domain C,. The negative CP exists only for £ > &..

© For SLP (4)—(6) we obtain two types’ bifurcations:
© Bzp: (z,pr) = ¢ = (bisg, Py 2y, big iy +1)
when zero and pole of CF merge into CEP and we get a loop type
curve.

@ Bop: (bi—14+1,bi41,) = bi—1441 — D
when two 1CPs merge into one 2CP. At this bifurcation the loop
type curve vanish.
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Problems with Neumann condition
Problem with one symmetrical type NC

Let us analyze SLP with one classical BC

—u"" =xu, te€(0,1), (15)
u(0) =0, (16)

and another two-point NBC of Samarskii—Bitsadze type:

w' (1) = yu(g), Case 1 (17a)
W (1) = il (€), Case 2 (17b)

with the parameters v € R and ¢ € [0, 1].

S. Pegiulyté and A. Stikonas, 2005-2008.

If v = 0, we have problems with classical BCs. In this case, all the

eigenvalues are positive and eigenfunctions do not depend on the parameter

&
N = 72 (k —1/2)%, e =sin(n(k —1/2)1), keN. (18)

Kristina Bingelé, Sigita Peciulyté, Artdras Stikonas (2009);
“Investigation of complex eigenvalues for stationary problems with two-point nonlocal
boundary condition”.
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Problems with Neumann condition
Problem with one symmetrical type NC

There exists a nontrivial solution (eigenfunction) if ¢ is the root of the function:

cos(rg) =z =) qeC, (1%9)
cos(mq) = ycos(émq),  Z(q) =~Pe(q) q€C. (19b)

For SLP (15)—(17a) Constant Eigenvalues exist only for rational parameter
E=m/ne (0,1),meN,, neN,, values and those eigenvalues are equal to
X = (m¢s)?, ¢ i= (s —1/2)n, s € N.

For SLP (15)—(17b) Constant Eigenvalues exist only for rational parameter
E=m/n € (0, 1), m,n € N,, values and those eigenvalues are equal to
A = (mes)?, ¢ i=n(s — 1/2), s € N.
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Problems with Neumann condition
Problem with one symmetrical type NC

For SLP (4)—(6) we have meromorphic Complex Characteristic Functions
(Complex CF)

_ Z(g) _ mqcos(mq)
ve(q) = Pela) ~ sin(ema) q € Cy, (20a)
_ Z(g) _ cos(mq)
Ye(q) = Pela) ~ cos(éma)’ q€Cy. (20b)

Real Characteristic Function (Real CF) describes only real Nonconstant
Eigenvalues and it is restriction of the Complex CF ~.(¢) on the set R,:

7rx'cosh(1rx) x <0
Yr®) =€) = Smem) (21a)
(e x=0.
cosh(mx) x <0
W) = 1(6€) =3 “iery (21b)
et x> 0.
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Problems with Neumann condition
Problem with one symmetrical type NC

(a) Real CF (b) Spectrum Curves  (c) & = 0 (the limit case)
Figure 6: Real CF and Spectrum Curves for £ = 1 and Real CF for ¢ = 0 in Case 1.

JIRREE f

(a) RealCF ¢ =0 (b) Real CF ¢ = % (c) Real CF ¢ =1 (the limit casg

Figure 7: Real CFfor ¢ =0 and ¢ < 1in Case 2.
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Problems with Neumann condition
Problem with one symmetrical type NC

Bifurcations 3., and 35, in Case 1.

(d) £ =0.799 ()¢ =& =4/5 (f) £ =0.801
Figure 8: Spectrum Curves for various parameter ¢ values in Case 1



Problems with Neumann condition

Problem with one symmetr\cq\ type NC

Symmetric Zero and Pole bifurcation /32

» in Case 2.

Figure 9: CF and bifurcation in Case 2.

y b],zf 12 z b3 n 'En.n z
(@) € =0.333 (b)é&=1/3 (c) £ =0.3334
DA Ia’j‘?l”‘” v M ‘0;
N . M " C,
(d) £ =0.333 (e) & =1/3 (f) € =0.3334
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Problems with Dirichlet condition
Problem with one symmetrical type NC

Let us investigate SLP

—u”" =xu, t€(0,1), (22)

with one classical (Neumann type) BC:
u'(0) =0, (23)

and another two-point NBC (0 < £ < 1)
' (1) = yu(), (24a)
' (1) = ' (€), (24Db)
u(1) = ' (§), (24c)
u(1) = yu(§), (24d)

where parameters vy € Rand € € [0, 1].
If v = 0, we obtain classical BVP. In this case, all the eigenvalues are positive
and eigenfunctions do not depend on the parameter &:

A = (nk)z, uy, = cos(wkt), ke N (Caseland2), (25a)
e = 2 (k — 1/2)2, uy = cos(m(k — 1/2)1), k€N (Case3and4). (25b)

Theorem 2.9.

Spectra for SLPs (15)—(17b) and (22)—(24d) overlap for all v and &.
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Problems with Dirichlet condition
Problem with one symmetrical type NC
Eigenvalue X\ = 0 (C # 0) exists if and only if:

@ y=0inCase 1;
@ + is any number in Case 2;
@ = 1inCase 4.

In Case 3 eigenvalue A\ = 0 does not exist.

There exists a nontrivial solution (eigenfunction) if ¢ is the root of the function:
—7gsin(mq) =~y cos(mg§), (26a)

gsin(mq) = vgsin(mqé), (26b)

— cos(mq) = ymgsin(mgf), (26¢)

cos(mq) = ~y cos(mgf). (26d)

We see that (26d) in Case 4 is the same as (19b) in Case 2.

Kristina Skucaité-Bingelé and Artlras Stikonas (2011);

"Investigation of complex eigenvalues for a stationary problem with two-point nonlocal
boundary condition”.

Artlras Stikonas and Olga Stikoniené (2009);

"Characteristic functions for Sturm—Liouville problems with nonlocal boundary
conditions” (Case 2 (26b)).
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Problems with Dirichlet condition
Problem with one symmetrical type NC
We introduce two entire functions:

Z(q) = mqsin(mq); P¢(q) == — cos(émg), geC, (27a)
Z(q) := mgsin(mq); Pe(q) := mgsin(mgs), geC, (27b)
Z(q) := cos(mq); P¢(q) == —mgsin(rg€), q€C. (27¢)

For any CE X\ € C), there exists the Constant Eigenvalue Point
(CEP) g € C,. CEP are roots of the system:

Z(q) =0,  Pe(q) =0. (28)




Problems with Dirichlet condition

Problem with one symmetrical type NC

Corollary 2.10.

Spectrum Curves and Spectrum Domain N for SLPs (15)—(17b) and
(22)—(24d) are the same.

Remark 2.13.

In Case 2 RP ¢ = 0 is CEP (of the second order). For the other cases CEPs
are positive.

Remark 2.18.

CEP at Ramification Point co = 0 in Case 2 is double in C, but corresponding
CE X =0 is simple.

28/56



Problems with Dirichlet condition
Problem with one symmetrical type NC

Lemma 2.15.

For SLP (22)—(24a) Constant Eigenvalues exist only for rational parameter
E=m/ne (0,1),meN,, neN,, ged(m,n) = 1, values and those
eigenvalues are equal to \, = (7¢,)?, ¢; := n(s — 1/2), s € N.

| \

Lemma 2.16.

For SLP (22)—(24b) Constant Eigenvalues exist only for rational parameter
E=m/ne (0, 1), mn €N, ged(m,n) = 1, values and those eigenvalues are
equal to X\, = (m¢,)?, ¢; := ns, s € Np.

For SLP (22)—(24c) Constant Eigenvalues exist only for rational parameter
E=m/ne (0,1),meN,,neN,, gcd(m,n) = 1, values and those
eigenvalues are equal to \, = (7c,)%, ¢s :=n(s — 1/2), s € N.
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Problems with Dirichlet condition
Problem with one symmetrical type NC

For SLP (22)—(24) we have meromorphic Complex Characteristic Functions
(Complex CF)

~ mgsin(mq)
Ye(q) : " eos@ng) (29a)
__ sin(mq)
Ye(q) = sin(énq)’ (29b)
cos(mq)
vela) == mgsin(émrq)’ (29¢)

Spectrum of SLP (22)—(24) has one additional simple eigenvalue A = 0 in
addition to eigenvalues of spectrum of SLP (22)—(24) in Introduction [A.
Stikonas and O. Stikoniené 2009] for all v and £ € (0, 1).

Corollary 2.26.

Additional eigenvalue \ = 0 for SLP (22)—(24b) corresponds to nonregular
Spectrum Curve (CEP ¢ = 0) Ao. The other Spectrum curves for both SLPs
overlap
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Problems with Dirichlet condition

Problem with one symmetrical type NC

Bifurcations 3., and 35, in Case 1.

(d) € = 0.499867 (e) =& =1/2 (f) € = 0.5001

Figure 10: Bifurcations in Case 1 (Neumann BC).
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Problems with Dirichlet condition

Problem with one symmetncq\ type NC

Symmetric Zero and Pole bifurcation 32, in Case 2.

o p
/ e l
R

(d) € = 0.499999999  (€)¢ =& =172 (f) € = 0.500000001
Figure 11: CF and bifurcation in Case 2 (Neumann BC).
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Problems with Dirichlet condition

Problem with one symmetrical type NC

Bifurcations 5zp and (5,5 in Case 3.

(d) € = &5 = 0.400218...  (€) & = 0.400235 (f) € = 0.40036

Figure 12: Bifurcations in Case 3 (Neumann BC).
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Problems with Dirichlet condition

Problem with one symmetrical type NC

Img
: %
bsa
05 M
N, Req N Reg I e ;f.b"{@b"’l*»eq
[ R 24 TR T LR N) S
08
[ (A M A

(d) £ =0.673 (e) € = & = 0.67495... ()€ =0.678
Figure 13: Bifurcations in Case 3 (Neumann BC).




Problems with Dirichlet condition
Problems with Neumann condition

Let us analyze the SLP with one classical BC

—u"" =xu, t€(0,1), (30)
u(0) =0, (31)

and another two-point NC
u(§) = yu(l - ), (32)

with the parameters v € R and ¢ € [0, 1].

Case v = 0. If ¢ = 0, then have problem (30),(31) with one BC u(0) = 0 only.
If 0 < £ < 1, then we have the classical BVP in the interval [0, £] with BCs
u(0) = 0, u(¢) = 0, and its eigenvalues and eigenfunctions are

A= (%")2 u (1) = sin (%"’) . keN. (33)

Case v = o0. If £ = 1, we have problem (30)—(31) with one BC «(0) = 0. If

0 < ¢ < 1 then we have the same situation as in Case v = 0 with the BVP in
the interval [0, 1 — &].

Case ¢ = 1. If v = 1, then we have problem (30)—(31) with one BC u(0) = 0.
If v # 1, then we have BVP in the interval [0, 1] and the initial value problem
in the interval [1,1].
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Problems with Dirichlet condition
Problems with Neumann condition

There exists a nontrivial solution, if ¢ is the root of the equation

sin(émq) ’ysin ((1 - 5)7"‘7) ]

q ™q

Ze(q) = vPe(q) = vZ1-¢(9), q€Cq. (34)

Roots of the system
sin(mwq) = 0, sin(mg€) = 0, (35)
are CEP of SLP (30)—(32).

For SLP (30)—(32) Constant Eigenvalues exist only for rational parameter

E=m/ne (0,1),mneN,E+#1/2,values and those eigenvalues are equal
to )\, = (7rc_r)2, cs =ns, s € N,

Kristina Skugaité-Bingelé, Artiiras Stikonas (2013);
“Inverstigation of the spectrum for Sturm-Liouville problems with a nonlocal boundary
condition”.




Problems with Dirichlet condition
Problems with Neumann condition

For SLP (30)—(32) we have meromorphic Complex CF

_ Z(q) sin(&mq)
@)= 7 @~ sm((1 - ©)ma)

, qeC,. (36)

Remark 2.31.

NC (32) we can rewrite as
u(l=8) =), F=1/7. 37)

NC (37) we can rewrite as

u(€) = Au(l — §). (38)

So, the spectrum for SPL (30)—(32) with parameters 0 < £ < 1/2 and ~ is the
same as the spectrum for SPL (30)—(31), (37) with parameters 1/2 < £ < 1
and 4 = 1/+. Thus, it is enough to investigate problem (30)—(32) with the
parameter 1/2 < € < 1.
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Problems with Dirichlet condition
Problems with Neumann condition

Theorem 2.33.

Spectrum for SLP (30)—(32) for 1/2 < £ < 1 is equivalent to Spectrum for

SLP:
—u" =xu, te€(0,1), (39)
u(0) =0,
u(1) = yu(g),

Artiiras Stikonas (2007);
"The Sturm—Liouville problems with nonlocal boundary conditions”




Problems with Dirichlet condition
Problems with Neumann condition

Conclusions of this Chapter

@ For SLP with Dirichlet type BC (two cases SLP¢, SLPY) (15)—(17), SLP
with Neumann type BC (three cases SLP7, SLP3, SLP; and SLP} ~
SLPY) (22)—(24) and SLP with symmetrical type BC (SLP*) (30)—(32)
CEs do not exist for irrational parameter ¢ and exist only for rational
£E=2¢cQ,0<m<n,ged(m,n) =1

@ CPs of the first order (and complex eigenvalues) exist for all SLP in
case ¢ € (0, 1), for SLPY in case &€ = 0, SLP? in case ¢ = 0. We have
infinite number of such CPs of the first order. Negative CP of the first
order exists for SLP} in case € € (0, 1). CPs of the second order exist
for SLP4, SLP?, SLP% (only for some ¢ € (0, 1)).

© For SSLPY, SLP¢, SLP?, SLP%, SLP%, SLP* we obtain five types
bifurcations (8%, (s, Bzr, By and B)
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Discrete Problem with Dirichlet condition
Discrete Problem with Neumann condition

In this chapter we investigate a discrete Sturm—Liouville Problems (dSLP)
corresponding to SLPs in Chapter 1 and Chapter 2:

—u”" =X, te€(0,1), (40)

with one classical (Dirichlet or Neumann) BC:

u(0) =0or «'(0) =0 (41)

and another two-point NBC:
u(1) = v (€), (42a)
u(l) = yu(§), (42b)

with the parametery e R, 0 < £ < 1.

Kristina Skucaité-Bingelé, Artaras Stikonas (2011);

"Investigation of complex eigenvalues for a stationary problem with two-point nonlocal
boundary condition”. y

Kristina Bingelé, Agné Bankauskiené, Artiras Stikonas (2019);

"Spectrum Curves for a discrete Sturm—Liouville problem with one integral boundary

condition”.
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Discrete Problem with Neumann condition

We approximate SLP (40)—(42) with Diriclet BC by the following
Finite-Difference Scheme (FDS) and get a discrete Sturm—Liouville Problem

(dSLP):
Uiy —2U; + U; o
”#’M+)\Uj:0, j=Tn—1, (43)
Up =0, (44)
with NBC (0 < m < n)
Un = %;,(Um-‘—l - Um—l)7 (453)
Uy = yUp. (45b)

If v = 0, we have the classical BCs and all the n — 1 eigenvalues for the
classical FDS are positive and algebraically simple and do not depend on the
parameters ¢:

M(0) = N'(gx(0)), Uk,j(0) = sin(mqi(0);), gx(0) = k € N". (46)
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Discrete Problem with Neumann condition

sin(mq) wqh

—— = ycos(§mq), (47a)

Tq sin(wgh)

sin(mq) N sin(émq) o1 (47b)
Tq 1 — hq mq 1—hg

Roots of this equation are EPs for dSLP (43)—(45). The bijection

A= X'(g) = & sin’*(mqh/2) = 5 (1 — cos(mzh)) allows to find corresponding
eigenvalues.

We introduce functions:

Z'(z) == Z(z) - Snf%h) Z(z) = Singz), Pi(z) = P¢(2) := cos(émz)  (48a)
7'() = 2(2) - ﬁ 2(2) = sin(mz), PL(2) = Pe(2) - $ (48b)

P¢(z) := sin(§mz);

For any CE X € C, there exists the Constant Eigenvalue Point (CEP) g € C,.
CEP are roots of the system:

Z'q)=0,  Pi(g)=0. (49) £
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Discrete Problem with Neumann condition

Lemma 3.5.

For dSLP (43)—(45a) Constant Eigenvalues exist only for ¢ = M/N € (0, 1),
M € N,, N € N,, values and those eigenvalues are equal to A, = X (c;),
¢s:=(s—1/2)N,s =1,K.

| A\

Lemma 3.6.

For dSLP (43)—(45b) Constant Eigenvalues exist only for ¢ = M/N € (0, 1),
M,N € N, K > 1, values and those eigenvalues are equal to \; = \(c,),
cs:=Ns,s=1,K— 1.

For dSLP (43)—(45) we have meromorphic functions (Complex CF)

 Z(g) . mqh sin(mq) __ mqh
() = P¢(q) sin(mgh)  mqcos(émq) sin(mgh)’ (50a)
relg) = L) _ sin(ma) (50b)

© Pelg)  sin(émg)
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Discrete Problem with Neumann condition

Real CF in Case 1.

Figure 14: Real CF (dSLP Dirichlet BC) for various parameter ¢values in Case 1:
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Discrete Problem with Neumann condition
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Figure 15: Spectrum Curves (dSLP Dirichlet BC) for various ¢ values in Case 1.




Discrete Problem with Neumann condition

(d) € = 300,400 () € = 301400 (f) € = 302/400
Figure 16: Spectrum Curves near Ramification Point ¢ = 0 Case 1.

46/56



Discrete Problem with Neumann condition

Real CF in Case 2.

)

(@) §=1/4 (b) £ =2/4

R N Y I N 2 O I PR N N
B \\ (VG RVAL NG \\
d¢=1/2 (e) £ =4/8 (f) £ =5/10

Figure 17: Real CF (dSLP Dirichlet BC) for various parameter ¢values in Case 2:
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Discrete Problem with Neumann condition
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Figure 18: Spectrum Curves (dSLP Dirichlet BC) for various ¢ values in Case 2.




Discrete Problem with Dirichlet condition

We approximate SLP (40)—(42) with Neumann type BC by FDS and get

dSLP:
U_i —2U; + U; I
S e T = M=o, j=Tn—1, (51)
Uy = Uy, (52)
with NBC (0 < m < n)
U, = %,(Um-l»l - Um—]): (533)
Upn = vUn. (53b)

If v = 0, we have the classical BCs and all the n — 1 eigenvalues for the
classical FDS are positive and algebraically simple and do not depend on the
parameters &:

cos (mar(0) (5 — h/2))
cos(mqr(0)h/2) 64

M(O) = s (rag (O)h/2), Upi(0) =

k=1,n—1.
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Discrete Problem with Dirichlet condition

_ cos (rq(1 — n/2)) sin(mgh/2)

cos(mgh2) = ~vsin (7rq(€ — h/2)) . 72 , (55a)
cos (mq(1 — h/2)) _ _cos (mq(€ — h/2)) 55b
cos(mqh/2) =7 cos(mqh/2) (55b)
Roots of this equation are EPs for dSLP (51)—(53).
We introduce functions:
h,\ _ COS (mz(1 — h/2)) )
2@ = cos(mwzh/2) (6)
Pg(z) := —sin (mz(§ — h/2)) - %, (57a)
Pg (@ = cos (wz(€ — h/2)) ' (57b)

cos(mzh/2)

For any CE X € C, there exists the Constant Eigenvalue Point (CEP) q € C,.
CEP are roots of the system:

7"q) =0,  Pi(q)=0. (68)
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Discrete Problem with Dirichlet condition

Lemma 3.17.

For dSLP (51)—(53a) Constant Eigenvalues do not exist.

| A\

Lemma 3.18.

For dSLP (51)—(53b) Constant Eigenvalues exist only for ¢ = m/n € (0, 1),
K > 1, values and those eigenvalues are equal to \, = \'(c;),
cs:=n/K-2s—1),s=1,(K—-1)/2.

For dSLP (51)—(53) we have meromorphic functions (Complex CF)
. cos (mq(1 — h/2)) h
() = sin (mq(€ — h/2)) . sin(mwqh)’

_ cos (mq(1 — 1/2))
D= o (rale = h/2) (o)

(59a)
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Discrete Problem with Dirichlet condition

Real CF in Case 1.

U .
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Figure 19: Real CF ~, (dSLP Neumann BC) for various parameter ¢ values in Case
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Discrete Problem with Dirichlet condition

(d¢=1/2 (e) ¢ =2/4 (f)g=4/8
Figure 20: Spectrum Curves (dSLP Neumann BC) for various ¢ values in Case 1.




Discrete Problem with Dirichlet condition

Real CF in Case 2.

(d¢&=1/3 ()¢ =2/6 ()£ =3/9

Figure 21: Real CF ~, (dSLP Neumann BC) for various parameter ¢ values in Case
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Discrete Problem with Dirichlet condition
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Figure 22: Spectrum Curves (dSLP Neumann BC) for various ¢ values in Case 2.




Discrete Problem with Dirichlet condition

Conclusions of this Chapter

We investigate the spectrum discrete Problems: two dSLP with
one classical Dirichlet BC and two-points NBCs, two dSLP with
one classical Neumann type BC and two-points NBCs.

@ For dSLP with one classical Dirichlet BC CEs can exist (in
Case 1 and Case 2);

©@ For dSLP with one classical Neumann BC CEs can exist
(in Case 1) and do not exist (in Case 2);

@ In limit case, the discrete Problems CF is the same as for
differential SLPs.
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