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Important problems

Sturm–Liouville Problem with Nonlocal Boundary Conditions
(NBCs):

Are important for investigation of the existence and
uniqueness of stationary problems soliution [Ionkin 1996,
Gulin 2003]
Very complicated because are not self-adjoint
Spectrum for such problems may be not positive (or real).
Useful for investigation the stability of the finite difference
schemes for nonstationary problems
Useful for investigation of the convergence of iterative
metods
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Aims and problems
In the case of the differential Sturm–Liouville Problem

−u′′ = λu, t ∈ (0, 1), (1)

u(0) = 0, or u′(0) = 0 (2)

we investigate the following NBC:
u(1) = γu(ξ), u(1) = γu′(ξ),

u′(1) = γu(ξ), u′(1) = γu′(ξ),

u(ξ) = γu(1− ξ),

where γ ∈ R ir ξ ∈ [0, 1].

Main problems:

- find Constant Eigenvalues, which do not depend on parameter γ;

- find Zeroes, Poles and Critical Points of Characteristic Function;

- describe Spectrum Curves and investigate their properties;

- investigate the dependence of Spectrum Domain on parameter ξ in
NBC, find bifurcation points and types.
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Aims and problems
In the case of discrete Sturm–Liouville Problem we approximate differential
equation by the following Finite-Difference Scheme (FDS)

Uj−1 − 2Uj + Uj+1

h2
+ λUj = 0, j = 1, n− 1. (3)

and investigate the following NBC:

Un = γ
Um+1 − Um−1

2h
, Un = γUm.

At the left side of interval one of the conditions was selected:
U0 = 0, U1 = U0.

The discrete problem was obtained by approximating the differential problem
by a finite difference scheme.
Main problems:

- find Constant Eigenvalues, which do not depend on parameter γ;
- find Zeroes, Poles and Critical Points of Characteristic Function;
- determine the dependence of these points on the number of grid points;
- investigate the behavior of Spectral Curves in the neighborhood of

special special points;
- find the quantitative relationships between the numbers of points

mentioned.
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SLP with one classical BC and another two-point NBC

−u′′ = λu, t ∈ (0, 1), (4)

u(0) = 0, (5)

u(1) = γu′(ξ), (6)

where parameters γ ∈ R and ξ ∈ [0, 1]. The eigenvalue λ ∈ Cλ := C and
eigenfunction u(t) can be complex function.
If γ = 0, then we have the SLP with classical BCs. In this case eigenvalues
and eigenfunction are known:

λk = (kπ)2, uk(t) = sin(kπt), k ∈ N (7)

The case γ =∞ corresponds to (4) with clasical BCs u(0) = 0 and u′(ξ) = 0,
ξ ∈ [0, 1], instead of condition (6) and eigenvalues and eigenfunction are:

λk =
(
(k − 1/2)π/ξ

)2
, uk(t) = sin

(
(k − 1/2)πt/ξ

)
, k ∈ N. (8)

Kristina Bingelė, Agnė Bankauskienė, Artūras Štikonas (2020);
”Investigation of spectrum curves for the Sturm–Liouville problem with two-point
nonlocal boundary condition”.
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Figure 1: Bijective mapping λ = (πq)2 between Cλ and Cq [?].

Nontrivial solution of the problem (4)–(6) exists if q ∈ Cq is the root of a
equation

sin(πq)
πq

= γ cos(ξπq) Z(q) = γPξ(q). (9)

We will define a Constant Eigenvalue (CE) as the eigenvalue which does not
depend on the parameter γ. Then for any CE λ ∈ Cλ there exists the
Constant Eigenvalue Point (CEP) q ∈ Cq. CEP are roots of the system:

Z(q) = 0, Pξ(q) = 0, (10)
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λ = 0

Eigenvalue λ = 0 exists if and only if γ = 1.

Lemma 1.6.

For SLP (4)–(6) Constant Eigenvalues exist only for rational parameter
ξ = m/n ∈ (0, 1), m ∈ No, n ∈ Ne, values and those eigenvalues are equal to
λs = (πcs)

2, cs := (s− 1/2)n, s ∈ N.

For SLP (4)–(6) we have meromorphic Complex Characteristic Functions
(Complex CF):

γc(q) = γc(q; ξ) :=
Z(q)

Pξ(q)
=

sin(πq)
cos(ξπq)

, z ∈ C, (11)

γ-points of Complex CF define EPs (and Eigenvalues, too) which depend on
parameter γ. We call such EPs Nonconstant Eigenvalue’s Points (NEP) and
corresponding Eigenvalues as Nonconstant Eigenvalues.
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Remark 1.1.

If the parameter ξ = 0, then from the formula (9) we obtain that Pξ ≡ 1. So,
Zξ = ∅ and CEPs do not exist. If ξ = 1 then there are no CEPs, because the
functions sin(πq) and cos(πq) have no common zeroes (we have the third
type BC).

Remark 1.2.

If the parameter ξ /∈ Q, then CEPs do not exist, because the equation
ξl = k − 1

2 has not roots for l, k ∈ N.

Remark 1.3.

If ξ ∈ Q, ξ = m/n and n ∈ Ne then the right hand side of equation nk − lm = n
2

is integer number. If n ∈ No then this equation has no roots.

Remark 1.7.

In the case ξ = 0 function Pξ ≡ 1 and PPs do not exist. If ξ > 0 a set of poles
Pξ = ∅ or countable. So, PPs exist if ξ 6= 1/n.
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(a)CF (ξ = 0) (b) Spectrum Curves (ξ = 0) (c) Real CF (ξ = 0)

(d)CF (ξ = 1) (e) Spectrum Curves (ξ = 1) (f) Real CF (ξ = 1)

Figure 2: CCF, Spectrum Domain, Real CF for ξ = 0, ξ = 1. – Zero Point,
– Pole Point, – Ramification Point, – Branch Eigenvalue Point, – Critical Point.
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Real Characteristic Function (Real CF) describes only real Nonconstant
Eigenvalues and it is restriction of the Complex CF γc(q) on the set Rq. We
can use the argument x ∈ R for Real CF:

γr(x) = γr(x; ξ) :=

 γ(−ıx; ξ) = sinh(πx)
πx cosh(ξπx) , x 6 0;

γ(x; ξ) = sin(πx)
πx cos(ξπx) , x > 0.

(12)

This function is useful for investigation of real negative, zero and positive
eigenvalues

λ = λr(x) = λr(x; ξ) :=

{
−(πx)2, x 6 0;

(πx)2, x > 0.
(13)

Remark 1.11.

In the case ξ = ξc =
1√
3

the point q = 0 is 3CP in the domain Cq, but for λ = 0
it is only 1CP, because q = 0 is RP for map λ = (πq)2. In the complex plane
Cλ the Taylor series CF γ(q) have a form

γ(λ, ξ) := 1 +
(
− 1

6 + 1
2 ξ

2)λ+
( 1

120 −
1
24 ξ

4 −
( 1

2 (
1
6 −

1
2 ξ

2)
)
ξ2)λ2 +O(λ3). (14)

If ξ 6= ξc, then point q = 0 and λ = 0 are not CPs.
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Lemma 1.12.

Zero Point of CF can not be CP.

Remark 1.13.

Pole Point of CF is not CP. Function γ−1 has CP at this point only if order of
the pole is greater than the first

Remark 1.14.

In the case ξ = 1 and γ 6= 0 we can consider boundary condition
u′(1) = γ̃u(1), γ̃ ∈ R, where γ̃ = γ−1. Now CF is γ̃ = πq cos(πq)/ sin(πq) and
its zeroes are z̃k = pk, k ∈ N, poles are p̃k = zk, k ∈ N (for ξ = 1 CEPs do not
exist, but in the general case c̃k = ck for all k). For parameter γ̃ ∈ R all
Spectrum Curves will be regular.

Remark 1.9.

A point q =∞ 6∈ Cq. This point is singular (isolated essential point if Pξ = ∅,
otherwise we have cluster of poles) point.
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Zero and Pole bifurcation type βZP

(a) ξ = 0.45 (b) ξ = 1
2 (c) ξ = 0.55

(d) ξ = 0.577 (e) ξ = ξc =
1√
3

(f) ξ = 0.584

Figure 3: Spectrum Curves for various parameter ξ values.
– Critical Point at Branch Eigenvalue Point. 15 / 56
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The second order CP bifurcation β2B

(a) ξ = 0.247 (b) ξ = 1
4 (c) ξ = 0.25026

(d) ξ = ξ2b ≈ 0.25028 (e) ξ = 0.2503 (f) ξ = 0.253

Figure 4: Spectrum Curves for various parameter ξ values, bifurcations.
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The second order CP bifurcation β2B

(a) ξ = 0.735 (b) ξ = 3
4 (c) ξ = 0.7535

(d) ξ = ξ2b ≈ 0.7539... (e) ξ = 0.7545 (f) ξ = 0.76

Figure 5: Spectrum Curves for various parameter ξ values, bifurcations.
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Conclusions of this Chapter
1 For SLP (4)–(6) CEs do not exist for irrational parameter ξ and exist

only for ξ = m
n ∈ Q, 0 < m < n, m ∈ No, n ∈ Ne.

2 SLP (4)–(6) has two types CPs: the first, the second order. We have
only one 3CP, b2,1 = 0, ξ = ξc = 1/

√
3. But this point is 1CP in the

domain Cλ. The negative CP exists only for ξ > ξc.

3 For SLP (4)–(6) we obtain two types’ bifurcations:
βZP : (zls , pks)→ cs → (bls+1,ls , pks , zls , bls,ls+1)
when zero and pole of CF merge into CEP and we get a loop type
curve.

β2B : (bls−1,ls+1, bls+1,ls)→ bls−1,ls+1,ls → ∅
when two 1CPs merge into one 2CP. At this bifurcation the loop
type curve vanish.
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

Let us analyze SLP with one classical BC

−u′′ = λu, t ∈ (0, 1), (15)

u(0) = 0, (16)

and another two-point NBC of Samarskii–Bitsadze type:

u′(1) = γu(ξ), Case 1 (17a)

u′(1) = γu′(ξ), Case 2 (17b)

with the parameters γ ∈ R and ξ ∈ [0, 1].

S. Pečiulytė and A. Štikonas, 2005–2008.

If γ = 0, we have problems with classical BCs. In this case, all the
eigenvalues are positive and eigenfunctions do not depend on the parameter
ξ:

λk = π2(k − 1/2)2, uk = sin(π(k − 1/2)t), k ∈ N. (18)

Kristina Bingelė, Sigita Pečiulytė, Artūras Štikonas (2009);
”Investigation of complex eigenvalues for stationary problems with two-point nonlocal
boundary condition”.
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

There exists a nontrivial solution (eigenfunction) if q is the root of the function:

cos(πq) = γ
sin(ξπq)
πq

, Z(q) = γPξ(q) q ∈ C, (19a)

cos(πq) = γ cos(ξπq), Z(q) = γPξ(q) q ∈ C. (19b)

Lemma 2.3.

For SLP (15)–(17a) Constant Eigenvalues exist only for rational parameter
ξ = m/n ∈ (0, 1), m ∈ Ne, n ∈ No, values and those eigenvalues are equal to
λs = (πcs)

2, cs := (s− 1/2)n, s ∈ N.

Lemma 2.4.

For SLP (15)–(17b) Constant Eigenvalues exist only for rational parameter
ξ = m/n ∈ (0, 1), m, n ∈ No, values and those eigenvalues are equal to
λs = (πcs)

2, cs := n(s− 1/2), s ∈ N.
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

For SLP (4)–(6) we have meromorphic Complex Characteristic Functions
(Complex CF)

γc(q) =
Z(q)

Pξ(q)
=
πq cos(πq)
sin(ξπq)

, q ∈ Cq, (20a)

γc(q) =
Z(q)

Pξ(q)
=

cos(πq)
cos(ξπq)

, q ∈ Cq. (20b)

Real Characteristic Function (Real CF) describes only real Nonconstant
Eigenvalues and it is restriction of the Complex CF γc(q) on the set Rq:

γr(x) = γr(x; ξ) =


πx cosh(πx)
sinh(ξπx) , x 6 0;
πx cos(πx)
sin(ξπx) , x > 0.

(21a)

γr(x) = γr(x; ξ) =


cosh(πx)
cosh(ξπx) , x 6 0;
cos(πx)
cos(ξπx) , x > 0.

(21b)
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

(a) Real CF (b) Spectrum Curves (c) ξ = 0 (the limit case)
Figure 6: Real CF and Spectrum Curves for ξ = 1 and Real CF for ξ = 0 in Case 1.

(a) Real CF ξ = 0 (b) Real CF ξ = 499
500 (c) Real CF ξ = 1 (the limit case)

Figure 7: Real CF for ξ = 0 and ξ . 1 in Case 2.
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

Bifurcations β−1
ZP and β−1

2B in Case 1.

(a) ξ = 0.795 (b) ξ = 0.798 (c) ξ = ξ2b = 0.798552 . . .

(d) ξ = 0.799 (e) ξ = ξc = 4/5 (f) ξ = 0.801

Figure 8: Spectrum Curves for various parameter ξ values in Case 1
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

Symmetric Zero and Pole bifurcation β0
ZP in Case 2.

(a) ξ = 0.333 (b) ξc = 1/3 (c) ξ = 0.3334

(d) ξ = 0.333 (e) ξc = 1/3 (f) ξ = 0.3334

Figure 9: CF and bifurcation in Case 2.
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

Let us investigate SLP
−u′′ = λu, t ∈ (0, 1), (22)

with one classical (Neumann type) BC:
u′(0) = 0, (23)

and another two-point NBC (0 6 ξ 6 1):
u′(1) = γu(ξ), (24a)

u′(1) = γu′(ξ), (24b)

u(1) = γu′(ξ), (24c)

u(1) = γu(ξ), (24d)

where parameters γ ∈ R and ξ ∈ [0, 1].
If γ = 0, we obtain classical BVP. In this case, all the eigenvalues are positive
and eigenfunctions do not depend on the parameter ξ:
λk = (πk)2, uk = cos(πkt), k ∈ N ( Case 1 and 2), (25a)

λk = π2(k − 1/2)2, uk = cos(π(k − 1/2)t), k ∈ N ( Case 3 and 4). (25b)

Theorem 2.9.

Spectra for SLPs (15)–(17b) and (22)–(24d) overlap for all γ and ξ.
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

λ = 0

Eigenvalue λ = 0 (C 6= 0) exists if and only if:

γ = 0 in Case 1;
γ is any number in Case 2;
γ = 1 in Case 4.

In Case 3 eigenvalue λ = 0 does not exist.

There exists a nontrivial solution (eigenfunction) if q is the root of the function:
−πq sin(πq) = γ cos(πqξ), (26a)

q sin(πq) = γq sin(πqξ), (26b)

− cos(πq) = γπq sin(πqξ), (26c)

cos(πq) = γ cos(πqξ). (26d)

We see that (26d) in Case 4 is the same as (19b) in Case 2.

Kristina Skučaitė-Bingelė and Artūras Štikonas (2011);
”Investigation of complex eigenvalues for a stationary problem with two-point nonlocal
boundary condition”.

Artūras Štikonas and Olga Štikonienė (2009);
”Characteristic functions for Sturm–Liouville problems with nonlocal boundary
conditions” (Case 2 (26b)).
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

We introduce two entire functions:

Z(q) := πq sin(πq); Pξ(q) := − cos(ξπq), q ∈ C, (27a)
Z(q) := πq sin(πq); Pξ(q) := πq sin(πqξ), q ∈ C, (27b)
Z(q) := cos(πq); Pξ(q) := −πq sin(πqξ), q ∈ C. (27c)

For any CE λ ∈ Cλ there exists the Constant Eigenvalue Point
(CEP) q ∈ Cq. CEP are roots of the system:

Z(q) = 0, Pξ(q) = 0. (28)
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

Corollary 2.10.

Spectrum Curves and Spectrum Domain Nξ for SLPs (15)–(17b) and
(22)–(24d) are the same.

Remark 2.13.

In Case 2 RP q = 0 is CEP (of the second order). For the other cases CEPs
are positive.

Remark 2.18.

CEP at Ramification Point c0 = 0 in Case 2 is double in Cq but corresponding
CE λ = 0 is simple.
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

Lemma 2.15.

For SLP (22)–(24a) Constant Eigenvalues exist only for rational parameter
ξ = m/n ∈ (0, 1), m ∈ No, n ∈ Ne, gcd(m, n) = 1, values and those
eigenvalues are equal to λs = (πcs)

2, cs := n(s− 1/2), s ∈ N.

Lemma 2.16.

For SLP (22)–(24b) Constant Eigenvalues exist only for rational parameter
ξ = m/n ∈ (0, 1), m, n ∈ N, gcd(m, n) = 1, values and those eigenvalues are
equal to λs = (πcs)

2, cs := ns, s ∈ N0.

Lemma 2.17.

For SLP (22)–(24c) Constant Eigenvalues exist only for rational parameter
ξ = m/n ∈ (0, 1), m ∈ Ne, n ∈ No, gcd(m, n) = 1, values and those
eigenvalues are equal to λs = (πcs)

2, cs := n(s− 1/2), s ∈ N.
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

For SLP (22)–(24) we have meromorphic Complex Characteristic Functions
(Complex CF)

γc(q) : −
πq sin(πq)
cos(ξπq)

, (29a)

γc(q) :=
sin(πq)
sin(ξπq)

, (29b)

γc(q) := −
cos(πq)

πq sin(ξπq)
. (29c)

Theorem 2.25.

Spectrum of SLP (22)–(24) has one additional simple eigenvalue λ = 0 in
addition to eigenvalues of spectrum of SLP (22)–(24) in Introduction [A.
Štikonas and O. Štikonienė 2009] for all γ and ξ ∈ (0, 1).

Corollary 2.26.

Additional eigenvalue λ = 0 for SLP (22)–(24b) corresponds to nonregular
Spectrum Curve (CEP q = 0) N0. The other Spectrum curves for both SLPs
overlap
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

Bifurcations β−1
ZP and β−1

2B in Case 1.

(a) ξ = 0.4885 (b) ξ = 0.4998 (c) ξ = ξ2b = 0.4998645...

(d) ξ = 0.499867 (e) ξ = ξc = 1/2 (f) ξ = 0.5001

Figure 10: Bifurcations in Case 1 (Neumann BC).
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

Symmetric Zero and Pole bifurcation β0
ZP in Case 2.

g
x

g
x

g
x

Req

Imq

( , 0)1/x

(2, 0)

Req

Imq

(2, 0)

Req

Imq

( , 0)1/x

(2, 0)

(d) ξ = 0.499999999 (e) ξ = ξc = 1/2 (f) ξ = 0.500000001

Figure 11: CF and bifurcation in Case 2 (Neumann BC).
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

Bifurcations βZP and β2B in Case 3.

(a) ξ = 0.3999 (b) ξ = ξc = 2/5 (c) ξ = 0.4001

(d) ξ = ξ2b = 0.400218... (e) ξ = 0.400235 (f) ξ = 0.40036

Figure 12: Bifurcations in Case 3 (Neumann BC).
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

(a) ξ = 0.6656 (b) ξ = ξc = 2/3 (c) ξ = 0.6676

(d) ξ = 0.673 (e) ξ = ξ2b = 0.67495... (f) ξ = 0.678

Figure 13: Bifurcations in Case 3 (Neumann BC).
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Problems with Dirichlet condition
Problems with Neumann condition
Problem with one symmetrical type NC

Let us analyze the SLP with one classical BC

−u′′ = λu, t ∈ (0, 1), (30)

u(0) = 0, (31)

and another two-point NC

u(ξ) = γu(1− ξ), (32)

with the parameters γ ∈ R and ξ ∈ [0, 1].
Case γ = 0. If ξ = 0, then have problem (30),(31) with one BC u(0) = 0 only.
If 0 < ξ ≤ 1, then we have the classical BVP in the interval [0, ξ] with BCs
u(0) = 0, u(ξ) = 0, and its eigenvalues and eigenfunctions are

λk =
(πk
ξ

)2
, uk(t) = sin

(πkt
ξ

)
, k ∈ N. (33)

Case γ =∞. If ξ = 1, we have problem (30)–(31) with one BC u(0) = 0. If
0 ≤ ξ < 1 then we have the same situation as in Case γ = 0 with the BVP in
the interval [0, 1− ξ].
Case ξ = 1

2 . If γ = 1, then we have problem (30)–(31) with one BC u(0) = 0.
If γ 6= 1, then we have BVP in the interval [0, 1

2 ] and the initial value problem
in the interval

[ 1
2 , 1

]
.
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There exists a nontrivial solution, if q is the root of the equation

sin(ξπq)
πq

= γ
sin
(
(1− ξ)πq

)
πq

. Zξ(q) = γPξ(q) = γZ1−ξ(q), q ∈ Cq. (34)

Roots of the system

sin(πq) = 0, sin(πqξ) = 0, (35)

are CEP of SLP (30)–(32).

Lemma 2.29.

For SLP (30)–(32) Constant Eigenvalues exist only for rational parameter
ξ = m/n ∈ (0, 1), m, n ∈ N, ξ 6= 1/2, values and those eigenvalues are equal
to λs = (πcs)

2, cs = ns, s ∈ N.

Kristina Skučaitė-Bingelė, Artūras Štikonas (2013);
”Inverstigation of the spectrum for Sturm-Liouville problems with a nonlocal boundary
condition”.
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For SLP (30)–(32) we have meromorphic Complex CF

γc(q) =
Z(q)

Z1−ξ(q)
=

sin(ξπq)
sin
(
(1− ξ)πq

) , q ∈ Cq. (36)

Remark 2.31.

NC (32) we can rewrite as

u(1− ξ) = γ̃u(ξ), γ̃ = 1/γ. (37)

NC (37) we can rewrite as

u(ξ̃) = γ̃u(1− ξ̃). (38)

So, the spectrum for SPL (30)–(32) with parameters 0 < ξ < 1/2 and γ is the
same as the spectrum for SPL (30)–(31), (37) with parameters 1/2 < ξ̃ < 1
and γ̃ = 1/γ. Thus, it is enough to investigate problem (30)–(32) with the
parameter 1/2 < ξ < 1.
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Theorem 2.33.

Spectrum for SLP (30)–(32) for 1/2 < ξ < 1 is equivalent to Spectrum for
SLP:

−u′′ = λu, t ∈ (0, 1), (39)

u(0) = 0,

u(1) = γu(ξ),

Artūras Štikonas (2007);
”The Sturm–Liouville problems with nonlocal boundary conditions”
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Conclusions of this Chapter

1 For SLP with Dirichlet type BC (two cases SLPd
1, SLPd

2) (15)–(17), SLP
with Neumann type BC (three cases SLPn

1, SLPn
2, SLPn

3 and SLPn
4 ∼

SLPd
2) (22)–(24) and SLP with symmetrical type BC (SLPs) (30)–(32)

CEs do not exist for irrational parameter ξ and exist only for rational
ξ = m

n ∈ Q, 0 < m < n, gcd(m, n) = 1

2 CPs of the first order (and complex eigenvalues) exist for all SLP in
case ξ ∈ (0, 1), for SLPd

2 in case ξ = 0, SLPn
1 in case ξ = 0. We have

infinite number of such CPs of the first order. Negative CP of the first
order exists for SLPn

1 in case ξ ∈ (0, 1). CPs of the second order exist
for SLPd

2, SLPn
1, SLPn

3 (only for some ξ ∈ (0, 1)).

3 For SSLPd
1, SLPd

2, SLPn
1, SLPn

2, SLPn
3, SLPs we obtain five types

bifurcations (β0
ZP, β2B, βZP, β−1

2B and β−1
ZP )
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In this chapter we investigate a discrete Sturm–Liouville Problems (dSLP)
corresponding to SLPs in Chapter 1 and Chapter 2:

− u′′ = λu, t ∈ (0, 1), (40)

with one classical (Dirichlet or Neumann) BC:

u(0) = 0 or u′(0) = 0 (41)

and another two-point NBC:

u(1) = γu′(ξ), (42a)

u(1) = γu(ξ), (42b)

with the parameter γ ∈ R, 0 < ξ < 1.

Kristina Skučaitė-Bingelė, Artūras Štikonas (2011);
”Investigation of complex eigenvalues for a stationary problem with two-point nonlocal
boundary condition”.
Kristina Bingelė, Agnė Bankauskienė, Artūras Štikonas (2019);
”Spectrum Curves for a discrete Sturm–Liouville problem with one integral boundary
condition”.
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We approximate SLP (40)–(42) with Diriclet BC by the following
Finite-Difference Scheme (FDS) and get a discrete Sturm–Liouville Problem
(dSLP):

Uj−1 − 2Uj + Uj+1

h2
+ λUj = 0, j = 1, n− 1, (43)

U0 = 0, (44)

with NBC (0 < m < n)

Un = γ
2h (Um+1 − Um−1), (45a)

Un = γUm. (45b)

If γ = 0, we have the classical BCs and all the n− 1 eigenvalues for the
classical FDS are positive and algebraically simple and do not depend on the
parameters ξ:

λk(0) = λh(qk(0)), Uk,j(0) = sin(πqk(0)tj), qk(0) = k ∈ Nh. (46)
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sin(πq)
πq

·
πqh

sin(πqh)
= γ cos(ξπq), (47a)

sin(πq)
πq

·
1

1− hq
= γ

sin(ξπq)
πq

·
1

1− hq
. (47b)

Roots of this equation are EPs for dSLP (43)–(45). The bijection
λ = λh(q) = 4

h2 sin
2(πqh/2) = 2

h2

(
1− cos(πzh)

)
allows to find corresponding

eigenvalues.
We introduce functions:

Zh(z) := Z(z) ·
πzh

sin(πzh)
, Z(z) :=

sin(πz)
πz

, Ph
ξ(z) = Pξ(z) := cos(ξπz) (48a)

Zh(z) := Z(z) ·
1

πz(hz− 1)
, Z(z) := sin(πz), Ph

ξ(z) = Pξ(z) ·
1

πz(hz− 1)
, (48b)

Pξ(z) := sin(ξπz);

For any CE λ ∈ Cλ there exists the Constant Eigenvalue Point (CEP) q ∈ Cq.
CEP are roots of the system:

Zh(q) = 0, Ph
ξ(q) = 0. (49)
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Lemma 3.5.

For dSLP (43)–(45a) Constant Eigenvalues exist only for ξ = M/N ∈ (0, 1),
M ∈ No, N ∈ Ne, values and those eigenvalues are equal to λs = λh(cs),
cs := (s− 1/2)N, s = 1,K.

Lemma 3.6.

For dSLP (43)–(45b) Constant Eigenvalues exist only for ξ = M/N ∈ (0, 1),
M,N ∈ N, K > 1, values and those eigenvalues are equal to λs = λh(cs),
cs := Ns, s = 1,K − 1.

For dSLP (43)–(45) we have meromorphic functions (Complex CF)

γc(q) :=
Z(q)

Pξ(q)
·

πqh
sin(πqh)

=
sin(πq)

πq cos(ξπq)
·

πqh
sin(πqh)

, (50a)

γc(q) :=
Z(q)

Pξ(q)
=

sin(πq)
sin(ξπq)

. (50b)
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Real CF in Case 1.

(a) ξ = 1/6 (b) ξ = 2/6 (c) ξ = 3/6

(d) ξ = 2/3 (e) ξ = 4/6 (f) ξ = 8/12

Figure 14: Real CF (dSLP Dirichlet BC) for various parameter ξ values in Case 1.
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(a) ξ = 1/6 (b) ξ = 2/6 (c) ξ = 3/6

(d) ξ = 2/3 (e) ξ = 4/6 (f) ξ = 8/12

Figure 15: Spectrum Curves (dSLP Dirichlet BC) for various ξ values in Case 1.
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(a) ξ = 36/63 (b) ξ = 4/7 (c) ξ = 37/63

(d) ξ = 300/400 (e) ξ = 301/400 (f) ξ = 302/400

Figure 16: Spectrum Curves near Ramification Point q = 0 Case 1.
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Real CF in Case 2.

4 4 4

(a) ξ = 1/4 (b) ξ = 2/4 (c) ξ = 3/4

8 1010

(d) ξ = 1/2 (e) ξ = 4/8 (f) ξ = 5/10

Figure 17: Real CF (dSLP Dirichlet BC) for various parameter ξ values in Case 2.
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(a) ξ = 1/4 (b) ξ = 2/4 (c) ξ = 3/4

(d) ξ = 1/2 (e) ξ = 4/8 (f) ξ = 5/10

Figure 18: Spectrum Curves (dSLP Dirichlet BC) for various ξ values in Case 2.
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We approximate SLP (40)–(42) with Neumann type BC by FDS and get
dSLP:

Uj−1 − 2Uj + Uj+1

h2
+ λUj = 0, j = 1, n− 1, (51)

U0 = U1, (52)

with NBC (0 < m < n)

Un = γ
2h (Um+1 − Um−1), (53a)

Un = γUm. (53b)

If γ = 0, we have the classical BCs and all the n− 1 eigenvalues for the
classical FDS are positive and algebraically simple and do not depend on the
parameters ξ:

λk(0) =
4
h2

sin2(πqk(0)h/2), Uk,j(0) =
cos
(
πqk(0)(tj − h/2)

)
cos(πqk(0)h/2)

, (54)

k = 1, n− 1.
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−
cos
(
πq(1− h/2)

)
cos(πqh/2)

= γ sin
(
πq(ξ − h/2)

)
·
sin(πqh/2)

h/2
, (55a)

cos
(
πq(1− h/2)

)
cos(πqh/2)

= γ
cos
(
πq(ξ − h/2)

)
cos(πqh/2)

. (55b)

Roots of this equation are EPs for dSLP (51)–(53).
We introduce functions:

Zh(z) :=
cos
(
πz(1− h/2)

)
cos(πzh/2)

; (56)

Ph
ξ(z) := − sin

(
πz(ξ − h/2)

)
·
sin(πzh/2)

h/2
, (57a)

Ph
ξ(z) :=

cos
(
πz(ξ − h/2)

)
cos(πzh/2)

. (57b)

For any CE λ ∈ Cλ there exists the Constant Eigenvalue Point (CEP) q ∈ Cq.
CEP are roots of the system:

Zh(q) = 0, Ph
ξ(q) = 0. (58)
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Lemma 3.17.

For dSLP (51)–(53a) Constant Eigenvalues do not exist.

Lemma 3.18.

For dSLP (51)–(53b) Constant Eigenvalues exist only for ξ = m/n ∈ (0, 1),
K > 1, values and those eigenvalues are equal to λs = λh(cs),
cs := n/K · (2s− 1), s = 1, (K − 1)/2.

For dSLP (51)–(53) we have meromorphic functions (Complex CF)

γc(q) := −
cos
(
πq(1− h/2)

)
sin
(
πq(ξ − h/2)

) · h
sin(πqh)

, (59a)

γc(q) :=
cos
(
πq(1− h/2)

)
cos
(
πq(ξ − h/2)

) . (59b)
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Real CF in Case 1.

4 5 8 11

(a) ξ = 2/3 (b) ξ = 3/5 (c) ξ = 5/8

4 8 11

(d) ξ = 1/2 (e) ξ = 2/4 (f) ξ = 4/8

Figure 19: Real CF γr (dSLP Neumann BC) for various parameter ξ values in Case
1. 52 / 56
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3

(a) ξ = 2/3 (b) ξ = 3/5 (c) ξ = 5/8

(d) ξ = 1/2 (e) ξ = 2/4 (f) ξ = 4/8

Figure 20: Spectrum Curves (dSLP Neumann BC) for various ξ values in Case 1.
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Real CF in Case 2.

14 11 8 1 110

(a) ξ = 3/4 (b) ξ = 5/8 (c) ξ = 6/10

3 6 1 9

(d) ξ = 1/3 (e) ξ = 2/6 (f) ξ = 3/9

Figure 21: Real CF γr (dSLP Neumann BC) for various parameter ξ values in Case
2. 54 / 56
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(a) ξ = 3/4 (b) ξ = 5/8 (c) ξ = 6/10

(d) ξ = 1/3 (e) ξ = 2/6 (f) ξ = 3/9

Figure 22: Spectrum Curves (dSLP Neumann BC) for various ξ values in Case 2.
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Conclusions of this Chapter

We investigate the spectrum discrete Problems: two dSLP with
one classical Dirichlet BC and two-points NBCs, two dSLP with
one classical Neumann type BC and two-points NBCs.

1 For dSLP with one classical Dirichlet BC CEs can exist (in
Case 1 and Case 2);

2 For dSLP with one classical Neumann BC CEs can exist
(in Case 1) and do not exist (in Case 2);

3 In limit case, the discrete Problems CF is the same as for
differential SLPs.
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