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Abstract

We demonstrate how a multiplicative splitting method of order P
can be utilized to construct an additive splitting method of order
P + 3.

The weight coefficients of the additive method depend only on P,
which must be an odd number.

Specifically we discuss a fourth-order additive method, which is
yielded by the Lie-Trotter splitting. We provide error estimates,
stability analysis of a test problem, and numerical examples with
special discussion of the parallelization properties and applications
to nonlinear optics.
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Introduction

Consider an abstract initial value problem within a sufficiently
short evolution step τ

d

dt
u(t) = Hu(t), u(0) = u0, t ∈ [0, τ ], H =

M∑
m=1

Hm, (1)

where u(t) belongs to a finite or infinite dimensional Banach
space and a possibly unbounded operator H generates a semigroup
etH with u(t) = etHu0. Operator H is split in M “simple”
components Hm, such that the reduced equations du/dt = Hmu
can easily be addressed and generate individual semigroups.
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The final state u(τ) of the the evolution problem (1) is approximated
following the sequence

u0
eτH1

−−−→ w1(τ)
eτH2

−−−→ w2(τ)
eτH3

−−−→ · · · eτHM−1

−−−−→ wM−1(τ)
eτHM

−−−→ wM(τ),
(2)

where w1(τ) is calculated by solving the sub-problem

d

dt
w1(t) = H1w1(t), w1(0) = u0, t ∈ [0, τ ], (3)

followed by the calculation of w2(τ),

d

dt
w2(t) = H2w2(t), w2(0) = w1(τ), t ∈ [0, τ ], (4)

etc. The last member wM(τ) approximates u(τ).
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Generally, the components Hm do not commute, they can be
applied in different order.

The local error of a given SM can be characterized by the operator

`(eτHM · · · eτH2eτH1) = eτHM · · · eτH2eτH1 − eτH = O(τ2),

where the local error estimate follows from the Taylor expansion if
all components of H are bounded.
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The simplest first-order Lie-Trotter SM, which is denoted by Lτ ,
reads

Lτ = eτBeτA with `(Lτ ) = eτBeτA − eτ(A+B) = O(τ2). (5)

A second-order Strang SM, which is denoted by Sτ , reads

Sτ = e
1
2
τAeτBe

1
2
τA with `(Sτ ) = O(τ3). (6)

Another example is a “cascaded” second-order SM with a free
parameter σ

Cσ,τ = SστS(1−2σ)τSστ = e
σ
2
τAeστBe

1−σ
2
τAe(1−2σ)τBe

1−σ
2
τAeστBe

σ
2
τA.

It is promoted to the classical fourth-order SM Yτ (Yoshida), for a
special σ.
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An example is given by the generalized nonlinear Schrdinger
equationn (GNLSE) for a complex-valued wave envelope u(t, x)

i
∂

∂t
u(t, x) = D

(
−i

∂

∂x

)
u(t, x)− g|u(t, x)|2u(t, x), (7)

where the polynomial D() relates the wave vector k and the
frequency ω = D(k) of a linear modulation wave. One time step
for the GNLSE is naturally split into the linear and nonlinear
sub-steps

∂

∂t
w1(t, x) = −iD

(
−i

∂

∂x

)
w1(t, x),

∂

∂t
w2(t, x) = ig|w2(t, x)|2w2(t, x).
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Multiplicative SMs

A multiplicative SM Mτ with s-stages is defined by two ordered
sets of real or complex coefficients a1≤m≤s and b1≤m≤s such that

Mτ = ebsτBeasτA · · · eb2τBea2τAeb1τBea1τA,
s∑

m=1

am =
s∑

m=1

bm = 1,

We also define a companion SM M◦τ , where the upper index ◦
denotes swapping of A and B

M◦τ = ebsτAeasτB · · · eb2τAea2τBeb1τAea1τB ,

(MτNτ )◦ =M◦τN ◦τ .
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Any multiplicative SM Mτ generates another important
companion method

M•τ = (M−τ )−1 = ea1τAeb1τBea2τAeb2τB · · · easτAebsτB ,

(MτNτ )• = N •τM•τ .
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Local error and discrepancy

If τ is small enough, any multiplicative SM can be transformed to
a single exponential operator

ebsτBeasτA · · · eb2τBea2τAeb1τBea1τA =Mτ = eτ(A+B)+∆(Mτ ),
(8)

where ∆(Mτ ) will be referred to as discrepancy of the operator
Mτ .
To derive an explicit expression for ∆(Mτ ), we exploit the
Baker-Campbell-Hausdorff (BCH) formula

eτX eτY = eτ(X+Y )+ τ2

2
[X ,Y ]+ τ3

12
[X−Y ,[X ,Y ]]− τ4

24
[X ,[Y ,[X ,Y ]]]+···

with [X1,X2] = X1X2 − X2X1.
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The BCH formula is sequentially applied to the left-hand-side of
Eq. (8) and implies the expression

∆(Mτ ) =
∞∑
q=2

[M]q
q!

τq, (9)

where [M]q denotes a certain linear combination of the basis
commutators.

Equation (9) contains all we need to know to compute
discrepancies of the companion SMs derived from Mτ .
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Additive methods

A generic ASM Mτ is composed from J ≥ 2 multiplicative SMs
Mj , τ via

Mτ =
J∑

j=1

cjMj , τ with
J∑

j=1

cj = 1. (10)

Parallelization is here!
The local error of a generic ASM is given by

`(Mτ ) = Mτ−eτ(A+B) =
J∑

j=1

cj(Mj , τ−eτ(A+B)) =
J∑

j=1

cj`(Mj , τ ),

(11)
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The multiplicative SMs in Eq. (10) may have different orders and
we set

P = min
1≤j≤J

deg(Mj , τ ), P̄ = max
1≤j≤J

deg(Mj , τ ).

We want to construct new ASMs, such that

deg(Mj, τ ) > P̄.
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Examples

1.

L̃τ =
1

2
Lτ +

1

2
L◦τ , P = P̄ = 1, (12)

where deg(L̃τ ) = 2.

2.
It is not a good idea to try

S̃τ =
1

2
Sτ +

1

2
S◦τ , P = P̄ = 2, (13)

because deg(S̃τ ) = 2. Thus, swap symmetrization does not
improve Strang’s SM.
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3.

Burstein and Mirin suggested an ASM with four threads

Bτ =
4

3
S̃τ −

1

3
L̃τ , P = 1, P̄ = 2, (14)

where deg(Bτ ) = 3.
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The local error of a generic ASM can be written as

`(Mτ )=

∑
cj [Mj ]P+1

(P + 1)!
τP+1+

{∑
cj [Mj ]P+2

(P + 2)!
+

(A+B)?
∑

cj [Mj ]P+1

2(P + 1)!

}
τP+2

+

{∑
cj [Mj ]P+3

(P + 3)!
+

(A + B) ?
∑

cj [Mj ]P+2

2(P + 2)!

+
(A + B)2 ?

∑
cj [Mj ]P+1

6(P + 1)!
+
δP1

∑
cj([Mj ]P+1)2

2(P + 1)!(P + 1)!

}
τP+3 + O(τP+4).
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Richardson extrapolation

Consider Richardson extrapolation Mτ of a generic SM Mτ

Mτ =
2PM/

τ −Mτ

2P − 1
.

For instance, deg(Lτ ) = 1 provides Lτ = 2L/τ − Lτ with
deg(Lτ ) = 2.
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Richardson extrapolation of a palindromic
SM

Consider a generic palindromic SM Pτ . A classical result is that if
deg(Pτ ) increases by 1 by playing with the parameters am and bm

in ASM equations, it actually increases by 2, because deg(Pτ ) is
an even number.

Theorem
Richardson extrapolation of a palindromic method shall increase its
order by 2.
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For instance, we have deg(Sτ ) = 2 and therefore obtain

Sτ = Ŝτ =
4

3
S/τ −

1

3
Sτ with deg(Sτ ) = 4,

where we use the expressions for weights from the previous
subsection.
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The main result

Theorem
Let Mτ be a SM for which deg(Mτ ) is an odd number. Consider
an ASM

Mτ = c1Mτ + c2M•τ + c3M/
τ + c4M/•

τ , P = P̄ = deg(Mτ ),

c1 + c2 + c3 + c4 = 1.

Then a proper choice of the weight coefficients cj provides
deg(Mτ ) = P + 3.
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For instance, the first-order Lie-Trotter SM generates the following
new ASM

N τ =
2

3

(
e

1
2
τBe

1
2
τAe

1
2
τBe

1
2
τA + e

1
2
τAe

1
2
τBe

1
2
τAe

1
2
τB
)

− 1

6

(
eτBeτA + eτAeτB

)
, (15)
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Stability

Motivated by the concept of A-stability for ordinary differential
equations, we consider the problem

d

dt
z(t) = λz(t), λ ∈ C, Re(λ) < 0. (16)

The problem is adapted to our framework by setting z = x + iy
with

u(t) =

[
x(t)
y(t)

]
, H = A + B,

A =

[
Re(λ) − Im(λ)

0 0

]
, B =

[
0 0

Im(λ) Re(λ)

]
,
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Examples are shown in Fig. 1, we also indicate subdomains where
A-stable SMs are contractive, such that

un+1 =Mτun

implies ‖un+1‖ < ‖un‖ for the L2 norm. All considered schemes are
only conditionally stable, but the stability domain of the ASM N τ

is the largest.

We also note that Yoshida’s SM is not recommended for a large
dissipation, e.g., when the spectrum of an optical pulse expands
beyond the transparency window of a fiber.
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Re(λ)τRe(λ)τ

Im
(λ

)τ

5

0

-5

0-2-4
Re(λ)τRe(λ)τ

-6 0-2-4-6 0-2-4-6 0-2-4-6

Figure : Stability domains of the standard SMs and the proposed ASM
for the test problem (16). Light gray indicates A-stability, in gray
domains SMs are A-stable and, moreover, contractive. A-stable domains
for Lτ and Sτ are identical. Abnormal behavior of Yτ with the increase
of dissipation is related to the negative time step (1− 2σ0)τ . Light gray
and gray domains are the same for the new ASM.
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Numerical Experiments

Simulation errors ε versus the number of time steps Nt for the
soliton solutions of Eq. (7) with D(k) = k2/2.

The calculation results (points) are shown from top to bottom for
Lτ (gray), Sτ (black), Bτ (brown), Yτ (blue), N τ (red), and Sτ

(green). Straight lines correspond to the optimal fit ε = Cτp. For
the first-order soliton in (a,b) we set g = 1, X = 40, Nx = 29 and
either T = 10 (a) or T = 40 (b).

For the third-order soliton in (c,d) we set g = 0.1, X = 200,
Nx = 210 and either T = 20 (c) or T = 100 (d).
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Figure : Simulation errors ε versus the number of time steps Nt for the
soliton solutions of Eq. (7) with D(k) = k2/2.
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