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1Vytautas Magnus University, 2Institute of Mathematics and Informatics

1Vileikos 8, LT-44404, Kaunas, Lithuania,
2Akademijos 4, LT-08663, Vilnius, Lithuania

E-mail: s.peciulyte@if.vdu.lt, osh@fm.vtu.lt, ash@fm.vtu.lt

Abstract. The Sturm-Liouville problem with one classical boundary condition
and another nonlocal integral boundary condition is considered in this paper. Two
cases of nonlocal integral boundary conditions are investigated. There is analyzed
how spectrum of this problem depends on boundary condition parameters. Quali-
tative behaviour of all eigenvalues subject to nonlocal integral boundary condition
parameters is described.
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1. Introduction

Boundary problems with nonlocal conditions are a part of fast developing
differential equations theory. Problems of this type arise in various fields of
physics, biology, biotechnology and etc. Nonlocal conditions come up when
value of the function on the boundary is connected to values inside the domain.
Theoretical investigation of problems with various type of nonlocal boundary
conditions is actual problem and recently it is paid much attention for them
in the literature.

Originators of such problems were Samarskii and Bitsadze. They formu-
lated and investigated nonlocal boundary problem for elliptic equation [1].
Canon was one of the pioneers who investigated parabolic problems with in-
tegral boundary conditions [3]. Also parabolic problems with nonlocal integral
boundary conditions were analyzed in [2, 4, 5, 9, 12, 15, 16]. During the last
decade the number of differential problems with nonlocal boundary conditions
had increased.
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Quite new area, related to problems of this type, deals with investigation
of the spectrum of differential equations with nonlocal conditions. Eigenvalue
problems with nonlocal conditions are closely linked to boundary problems
for differential equations with nonlocal conditions [7, 8, 10]. In the papers
[6, 11, 13, 14] the similar problems are investigated for the operators with
nonlocal condition of Bitsadze-Samarskii or integral type.

The purpose of this paper is to analyze eigenvalue problem for station-
ary differential problem with two cases of nonlocal integral boundary condi-
tions. We investigate how spectrum of this problem depends on some nonlocal
boundary conditions parameters.

2. Sturm-Liouville Problem with Nonlocal Integral

Boundary Condition

Let us consider the Sturm - Liouville problem with one classical boundary
condition

−u′′ = λu, x ∈ (0, 1), (2.1)

u(0) = 0, (2.2)

and another nonlocal integral boundary condition:

u(1) = γ

∫ ξ

0

u(x) dx ( Case 1), (2.3)

or

u(1) = γ

∫ 1

ξ

u(x) dx ( Case 2), (2.4)

with parameters γ ∈ C̄ and ξ ∈ [0, 1]. In the general case eigenvalue λ ∈ C

and eigenfunctions u(x) are complex-valued functions. We investigate how
spectrum depends on boundary condition parameters γ and ξ.

When γ = 0 or ξ = 0 problems (2.1)–(2.3) and (2.1)–(2.2), (2.4) are
reduced to problems with classical boundary conditions. Their eigenvalues
and eigenfunctions are well-known:

λk = (πk)2, uk(x) = sin(πkx), k ∈ N. (2.5)

When λ = 0 then u(x) = cx. Substituting this solution into the second bound-
ary condition we get

c = γ

∫ ξ

0

cx dx = cγ
ξ2

2
( Case 1), c = γ

∫ 1

ξ

cx dx = cγ
1 − ξ2

2
( Case 2).

Lemma 1. The eigenvalue λ = 0 exists if and only if γ =
2

ξ2
in the Case 1

and γ =
2

1− ξ2
in the Case 2.
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In the general case, when λ 6= 0, eigenfunctions are u = c sin(qx) and
eigenvalues λ = q2, where q ∈ Cq r {0}, Cq := {q ∈ C|Re q > 0 or Re q = 0,
Im q > 0 or q = 0}. They satisfy equation (2.1), boundary condition (2.2) and
nonlocal boundary condition (2.3) or nonlocal boundary condition (2.4).

When λ 6= 0 nonlocal boundary conditions are satisfied, if

c sin(q) = c γ

∫ ξ

0

sin(qx)dx ( Case 1), (2.6)

c sin(q) = c γ

∫ 1

ξ

sin(qx)dx ( Case 2), (2.7)

and nontrivial solution exists if q is a root of the equation

f1(q) := 2γ
sin2 ξq

2

q2
−

sin q

q
= 0 ( Case 1), (2.8)

f2(q) := 2γ
sin( (1+ξ)q

2 ) sin( (1−ξ)q
2 )

q2
−

sin(q)

q
= 0 ( Case 2). (2.9)

If sin q = 0 and sin ξq
2 = 0 in the first case, and sin( (1+ξ)q

2 ) = 0 or

sin( (1−ξ)q
2 ) = 0 and sin(q) = 0 in the second case, then equations (2.8) and

(2.9) are valid for all γ ∈ C. In this case we get constant eigenvalues, which
don’t depend on parameter γ. If parameter ξ is irrational number then such
eigenvalues do not exist.

Let ξ = r = m
n
∈ Q. For ξ ∈ (0, 1) we suppose that m and n (n > m > 0)

are positive coprime integer numbers. If ξ = 0 we suppose m = 0, n = 1 and
if ξ = 1 we suppose m = 1, n = 1. Let denote subset Nm := {n ∈ N|n =
km, k ∈ N} of integer positive numbers, Ne = {k ∈ N2|k ≤ n} ∪ {0} – even
numbers and No = {k ∈ N r N2|k ≤ n} – odd numbers.

Lemma 2. Constant eigenvalues exist only for rational ξ = m
n

∈ [0, 1],
and those eigenvalues are equal: λk = (nπk)2, k ∈ N, m ∈ Ne and λk =
(2nπk)2, k ∈ N, m ∈ No in Case 1; λk = (nπk)2, k ∈ N, n − m ∈ Ne and

λk = (2nπk)2, k ∈ N, n − m ∈ No in Case 2.

Lemma 3. There is countable number of eigenvalues, which depend on pa-

rameter γ. They exist for every γ ∈ C and every ξ ∈ (0, 1] in Case 1 and

every ξ ∈ [0, 1) in Case 2. Point λ = ∞ is accumulation point of those eigen-

values.

3. Real Eigenvalues Case

Now instead q ∈ Cq we take q only on rays q = x ≥ 0 and q = −ix, x ≤ 0.
We have positive eigenvalues in the case q = x > 0 and negative eigenvalues
in the case q = −ix, x < 0. Point q = x = 0 corresponds λ = 0.

For the real x we define functions:
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Case 1, ξ = 1

4
Case 1, ξ = 1

2
Case 1, ξ = 3

4

Case 2, ξ = 1

2
Case 2, ξ = 3

4
Case 1, ξ = 1; Case 2, ξ = 0

Figure 1. Functions γ1(x/π) and γ2(x/π).

γ1(x) :=



















γ1−(x) =
x sinh x

2 sinh2( ξx
2 )

, for x ≤ 0,

γ1+(x) =
x sin x

2 sin2( ξx
2 )

, for x ≥ 0;

(3.1)

γ2(x) :=



















γ2−(x) =
x sinh x

2 sinh( (1+ξ)x
2 ) sinh( (1−ξ)x

2 )
for x ≤ 0,

γ2+(x) =
x sin x

2 sin( (1+ξ)x
2 ) sin( (1−ξ)x

2 )
for x ≥ 0.

(3.2)

Function γk+ corresponds to positive eigenvalues case, function γk− corre-
sponds to negative eigenvalues case. Graphics of functions γ1(x) and γ2(x) for
various ξ are shown in Fig. 1.

Few lemmas about real eigenvalues follow from the properties of those
functions.

In the Sec. 1 we have shown that λ = 0 exists if and only if γ = γ0 (see
Lemma 1), and γ0 = 2

ξ2 in Case 1, γ0 = 2
1−ξ2 in Case 2.

Lemma 4. For γ > γ0 one negative eigenvalue exists, and for γ ≤ γ0 there

are no negative eigenvalues.

We name points pk in which functions γ1 or γ2 aren’t defined, i.e. γ1(pk) =
∞ or γ2(pk) = ∞ as poles. We can enumerate all poles pk, k ∈ N in the
increasing order, i.e. p1 < p2 < · · · < pk = pk+1 < . . . . There pk is the first
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order pole witch consist with constant eigenvalue point. Formally we note
p0 = 0.

Lemma 5. All eigenvalues of problem (2.1)–(2.2), (2.4) with real γ are real

numbers. Each positive eigenvalue λk(γ) = x2
k(γ), where xk ∈ (pk−1, pk), if

pk−1 < pk, or xk = pk, if pk−1 = pk.

Corollary 1. For problem (2.1)–(2.2), (2.4) the following properties are valid:

lim
γ→−∞

xk(γ) = pk, lim
γ→+∞

xk(γ) = pk−1, k ∈ N r {1}, lim
γ→+∞

x1(γ) = −∞.

In Case 1 of the boundary conditions there isn’t such simple spectrum. In
this case for real γ multiple and complex eigenvalues can exist. In many cases
it is necessary to know when all eigenvalues are positive and non multiple,
i.e. the spectrum of problem with nonlocal conditions is similar to the spec-
trum of classical problems. When the qualitative root distribution depends
on parameters γ and ξ, it is necessary to find such interval for γ where the
spectrum of the problem satisfies this property.

Let us suppose that xk, k ∈ N are positive roots of equation

sin x + x cosx = 0, x2 ≈ 4.91318, x3 ≈ 7.977.

Then we define

ξk :=
π

xk

, γk :=
xk sin xk

2
, k ∈ N,

ξ2 ≈ 0.639421, ξ3 ≈ 0.393743, γ2 ≈ −2.4072, γ3 ≈ 3.95836.

Lemma 6. If γ2 ≤ γ ≤ γ3, then all eigenvalues of the problem (2.1)–(2.3) are

real for all ξ ∈ (0, 1), and limitary cases are realizable when ξ = ξ2 and ξ = ξ3.

If γ2 < γ ≤ 2 then all eigenvalues are positive and simple for all ξ ∈ (0, 1).

4. Conclusions

1. Sturm-Liouville problems (2.1)–(2.3) (Case 1) and (2.1)–(2.2), (2.4) (Case
2) have similar spectrum properties in the complex plane. Both spectrums
haven’t constant eigenvalues for irrational ξ and countable number of non
constant and constant eigenvalues for rational ξ. All constant eigenvalues
are real positive numbers.

2. Both problems have only one negative eigenvalue for γ > γ0.

3. Positive parts of spectrums are different for real γ case. Problem in Case 2
has only real eigenvalues. In Case 1 problem has all real eigenvalues only
for γm(ξ) ≤ γ ≤ γM (ξ), but exists interval [γ2, γ3] ⊂ [γm, γM ] the same
for all ξ. So, in this case for some real γ multiple and complex eigenvalues
exist.
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[14] M.P. Sapagovas and A.D. Štikonas. On the structure of the spectrum of a

differential operator with a nonlocal condition. Diff. Equations, 41(7), 1010–
1018, 2005.

[15] Y.F. Yin. On nonlinear parabolic equations with nonlocal boundary conditions.
Journal of Mathematical Analysis and Applications, 1(185), 161–174, 1994.

[16] N.I. Yurchuk. Mixed problem with an integral condition for certain parabolic
equations. Differents. Uravn., 12(22), 2117–2126, 1986.


